
ST.ANNE’S COLLEGE OF ENGINEERING AND

TECHNOLOGY
ANGUCHETTYPALAYAM

DEPARTMENT ELECTRICAL AND ELECTRONICS

ENGINEERING

EE6612- MICROPROCESSOR AND MICROCONTROLLER

LAB MANUAL

VI SEMESTER

NAME: ___________________________________

YEAR/SEM: _______________BRANCH:_______

REG. NO.:________________________________

Prepared by

Mr. R.RADHAKRISHNAN, AP/ECE HOD

 2

SYLLABUS

EE6612 MICROPROCESSORS AND

MICROCONTROLLERS LABORATORY

OBJECTIVES:

 To provide training on programming of microprocessors and

microcontrollers and understand the interface requirements.

LIST OF EXPERIMENTS:

1. Simple arithmetic operations: addition / subtraction /

multiplication / division.

2. Programming with control instructions:

(i) Ascending / Descending order, Maximum / Minimum of

numbers

(ii) Programs using Rotate instructions

(iii) Hex / ASCII / BCD code conversions.

3. Interface Experiments: with 8085

(i) A/D Interfacing. & D/A Interfacing.

4. Traffic light controller.

5. I/O Port / Serial communication

6. Programming Practices with Simulators/Emulators/open source

7. Read a key interface display

8. Demonstration of basic instructions with 8051 Micro controller

execution, including:

(i) Conditional jumps, looping

(ii) Calling subroutines.

9. Programming I/O Port 8051

(i) Study on interface with A/D & D/A

(ii) Study on interface with DC & AC motor.

10. Mini project development with processors.

TOTAL: 45 PERIODS

 3

EXPT NO: 8085 PROGRAMMING DATE:

1(A). 8 BIT - ADDITION

AIM:

 To add two 8 bit numbers stored at consecutive memory

locations.

Apparatus required:

S.NO Apparatus required Quantity

1 8085 Microprocessor kit 1

2 Power supply

3 Opcode sheet 1

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory in accumulator.

3. Get the second number and add it to the accumulator.

4. Store the answer at another memory location.

OUTPUT: WITH CCARRY
INPUT OUTPUT

4500 9A 4502 56

4501 BC 4503 01

 4

FLOW CHART:

 NO

 YES

START

[HL] 4500H

[A] [M]

[A] [A]+[M]

[HL] [HL]+1

STOP

[HL] [HL]+1

[M] [A]

[C] 00H

[M] [C]

[HL] [HL]+1

Is there a

 Carry ?

[C] [C]+1

 5

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.

4101

4102 LXI H, 4500 Initialize HL reg. to

4500 4103

4104

4105 MOV A, M Transfer first data to

accumulator

4106 INX H Increment HL reg. to

point next memory

Location.

4107 ADD M Add first number to

acc. Content.

4108 JNC L1 Jump to location if

result does not yield

carry.
4109

410A

410B INR C Increment C reg.

410C L1 INX H Increment HL reg. to

point next memory

Location.

410D MOV M, A Transfer the result from

acc. to memory.

410E INX H Increment HL reg. to

point next memory

Location.

410F MOV M, C Move carry to memory

4110 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

4500 4502

4501 4503

RESULT:

Thus the 8 bit numbers stored at 4500 &4501 are added and the

result stored at 4502 & 4503.

 6

1(B). 8 BIT DATA SUBTRACTION

AIM:

 To subtract two 8 bit numbers stored at consecutive memory

locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory in accumulator.

3. Get the second number and subtract from the accumulator.

4. If the result yields a borrow, the content of the acc. is

complemented and 01H is added to it (2’s complement). A

register is cleared and the content of that reg. is incremented

in case there is a borrow. If there is no borrow the content of

the acc. is directly taken as the result.

5. Store the answer at next memory location.

OUTPUT: WITH BORROW
INPUT OUTPUT

4500 4502

4501 4503

 7

FLOW CHART:

 NO

 YES

START

[HL] 4500H

[A] [M]

Is there a

 Borrow ?

[A] [A]-[M]

[HL] [HL]+1

[C] 00H

[C] [C]+1

STOP

[HL] [HL]+1

[M] [A]

[M] [C]

[HL] [HL]+1

Complement [A]

Add 01H to [A]

 8

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.

4102

4102 LXI H, 4500 Initialize HL reg. to

4500 4103

4104

4105 MOV A, M Transfer first data to

accumulator

4106 INX H Increment HL reg. to

point next mem.

Location.

4107 SUB M Subtract first number

from acc. Content.

4108 JNC L1 Jump to location if

result does not yield

borrow.
4109

410A

410B INR C Increment C reg.

410C CMA Complement the Acc.

Content

410D ADI 01H Add 01H to content of

acc. 410E

410F L1 INX H Increment HL reg. to

point next mem.

Location.

4110 MOV M, A Transfer the result from

acc. to memory.

4111 INX H Increment HL reg. to

point next mem.

Location.

4112 MOV M, C Move carry to mem.

4113 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

4500 4502

4501 4503

RESULT:Thus the 8 bit numbers stored at 4500 &4501 are

subtracted and the result stored at 4502 & 4503.

 9

1(C). 8 BIT DATA MULTIPLICATION

AIM:

 To multiply two 8 bit numbers stored at consecutive memory

locations and store the result in memory.

ALGORITHM:

LOGIC: Multiplication can be done by repeated addition.

1. Initialize memory pointer to data location.

2. Move multiplicand to a register.

3. Move the multiplier to another register.

4. Clear the accumulator.

5. Add multiplicand to accumulator

6. Decrement multiplier

7. Repeat step 5 till multiplier comes to zero.

8. The result, which is in the accumulator, is stored in a memory

location.

 10

FLOW CHART:

 NO

 YES

 NO

 YES

[HL] 4500

 B  M

 A  00

 C  00

Is there

any carry

 C  C+1

 B  B-1

 [A]  [A] +[M]

[HL]  [HL]+1

IS B=0

A

START

 11

A

STOP

[HL] [HL]+1

[M] [A]

[M] [C]

[HL] [HL]+1

 12

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START LXI H, 4500 Initialize HL reg. to

4500

Transfer first data to

reg. B

4101

4102

4103 MOV B, M

4104 INX H Increment HL reg. to

point next mem.

Location.

4105 MVI A, 00H Clear the acc.

 4106

4107 MVI C, 00H Clear C reg for carry

4108

4109 L1 ADD M Add multiplicand

multiplier times.

410A JNC NEXT Jump to NEXT if there

is no carry 410B

410C

410D INR C Increment C reg

410E NEXT DCR B Decrement B reg

410F JNZ L1 Jump to L1 if B is not

zero. 4110

4111

4112 INX H Increment HL reg. to

point next mem.

Location.

4113 MOV M, A Transfer the result from

acc. to memory.

4114 INX H Increment HL reg. to

point next mem.

Location.

4115 MOV M, C Transfer the result from

C reg. to memory.

4116 HLT Stop the program

 13

OBSERVATION: WITTHOUT BORROW

INPUT OUTPUT

4500 4502

4501 4503

WITH BORROW
INPUT OUTPUT

4500 4502

4501 4503

RESULT:

Thus the 8-bit multiplication was done in 8085p using

repeated addition method.

 14

1(D). 8 BIT DIVISION

AIM:

 To divide two 8-bit numbers and store the result in memory.

ALGORITHM:

LOGIC: Division is done using the method Repeated subtraction.

1. Load Divisor and Dividend

2. Subtract divisor from dividend

3. Count the number of times of subtraction which equals the

quotient

4. Stop subtraction when the dividend is less than the divisor

.The dividend now becomes the remainder. Otherwise go to

step 2.

5. stop the program execution.

 15

FLOWCHART:

 NO

 YES

B  00

M  A-M

 [B]  [B] +1

IS A<0

 A  A+ M

 B  B-1

[HL] 4500

 A  M

[HL]  [HL]+1

START

STOP

[HL] [HL]+1

[M] [A]

[M] [B]

[HL] [HL]+1

 16

PROGRAM:

ADDRESS OPCODE LABEL MNEMO

NICS

OPERA

ND

COMMENTS

4100 MVI B,00 Clear B reg for quotient

4101

4102 LXI H,4500 Initialize HL reg. to

4500H 4103

4104

4105 MOV A,M Transfer dividend to acc.

4106 INX H Increment HL reg. to point

next mem. Location.

4107 LOOP SUB M Subtract divisor from dividend

4108 INR B Increment B reg

4109 JNC LOOP Jump to LOOP if result does

not yield borrow 410A

410B

410C ADD M Add divisor to acc.

410D DCR B Decrement B reg

410E INX H Increment HL reg. to point

next mem. Location.

410F MOV M,A Transfer the remainder from

acc. to memory.

4110 INX H Increment HL reg. to point

next mem. Location.

4111 MOV M,B Transfer the quotient from B

reg. to memory.

4112 HLT Stop the program

OBSERVATION:

S.NO INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

1 4500 4502

4501 4503

2 4500 4502

 4501 4503

RESULT:

 Thus an ALP was written for 8-bit division using repeated

subtraction method and executed using 8085 p kits

 17

 2. PROGRAMMING WITH CONTROL INSTRUCTIONS:

I. (A). LARGEST ELEMENT IN AN ARRAY

AIM:

 To find the largest element in an array.

ALGORITHM:

1. Place all the elements of an array in the consecutive memory

locations.

2. Fetch the first element from the memory location and load it in the

accumulator.

3. Initialize a counter (register) with the total number of elements in an

array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next

element).

7. If the accumulator content is smaller, then move the memory content

(largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory

location.

 18

FLOW CHART:

 NO

 YES

 NO

 YES

[B]  04H

[HL]  [8100H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[A] [HL]

[8105]  [A]

 START

[B]  [B]-1

IS

[B] = 0?

 STOP

 19

PROGRAM:

ADDRE

SS

OPCO

DE

LABEL MNEM

ONICS

OPER

AND

COMMENTS

4101 LXI H,4200 Initialize HL reg. to

8100H 4102

4103

4104 MVI B,04 Initialize B reg with no. of

comparisons(n-1) 4105

4106 MOV A,M Transfer first data to acc.

4107 LOOP1 INX H Increment HL reg. to point

next memory location

4108 CMP M Compare M & A

4109 JNC LOOP If A is greater than M then go

to loop 410A

410B

410C MOV A,M Transfer data from M to A reg

410D LOOP DCR B Decrement B reg

410E JNZ LOOP1 If B is not Zero go to loop1

410F

4110

4111 STA 4205 Store the result in a memory

location. 4112

4113

4114 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4200 4205

4201

4202

4203

4204

RESULT:

 Thus the largest number in the given array is found out.

 20

 (B). SMALLEST ELEMENT IN AN ARRAY

AIM:

 To find the smallest element in an array.

ALGORITHM:

1. Place all the elements of an array in the consecutive memory

locations.

2. Fetch the first element from the memory location and load it in the

accumulator.

3. Initialize a counter (register) with the total number of elements in an

array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next

element).

7. If the accumulator content is smaller, then move the memory content

(largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory

location.

 21

FLOW CHART:

 YES

 NO

 NO

 YES

[B]  04H

[HL]  [8100H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[A] [HL]

[8105]  [A]

 START

[B]  [B]-1

IS

[B] = 0?

 STOP

 22

PROGRAM:

ADDRE

SS

OPCO

DE

LABEL MNEM

ONICS

OPER

AND

COMMENTS

4101 LXI H,4200 Initialize HL reg. to

8100H 4102

4103

4104 MVI B,04 Initialize B reg with no. of

comparisons(n-1) 4105

4106 MOV A,M Transfer first data to acc.

4107 LOOP1 INX H Increment HL reg. to point

next memory location

4108 CMP M Compare M & A

4109 JC LOOP If A is lesser than M then go

to loop 410A

410B

410C MOV A,M Transfer data from M to A reg

410D LOOP DCR B Decrement B reg

410E JNZ LOOP1 If B is not Zero go to loop1

410F

4110

4111 STA 4205 Store the result in a memory

location. 4112

4113

4114 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4200 4205

4201

4202

4203

4204

RESULT:

 Thus the smallest number in the given array is found out.

 23

(C).ASCENDING ORDER

AIM:

 To sort the given number in the ascending order using 8085

microprocessor.

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.

 2. Compare the first two numbers and if the first number is larger

than second then interchange the number.

3. If the first number is smaller, go to step 4

 4. Repeat steps 2 and 3 until the numbers are in required order

 24

FLOWCHART:

 YES

 NO

[B]  04H

[HL]  [8100H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[D] [HL]

[HL]  [A]

[HL]  [HL] - 1

[HL]  [D]

[HL]  [HL] + 1

[C]  [C] – 01 H

A

[C]  04H

 START

 25

 NO

 YES

 NO

 YES

IS

[C] = 0?

A

[B]  [B]-1

IS

[B] = 0?

 STOP

 26

PROGRAM:

ADDR

E

SS

OPCO

DE

LABEL MNEM

ONICS

OPER

AND

COMMENTS

4100 MVI B,04 Initialize B reg with number

of comparisons (n-1) 4101

4102 LOOP 3 LXI H,4200 Initialize HL reg. to

8100H 4103

4104

4105 MVI C,04 Initialize C reg with no. of

comparisons(n-1) 4106

4107 LOOP2 MOV A,M Transfer first data to acc.

4108 INX H Increment HL reg. to point

next memory location

4109 CMP M Compare M & A

410A JC LOOP1 If A is less than M then go to

loop1 410B

410C

410D MOV D,M Transfer data from M to D reg

410E MOV M,A Transfer data from acc to M

410F DCX H Decrement HL pair

4110 MOV M,D Transfer data from D to M

4111 INX H Increment HL pair

4112 LOOP1 DCR C Decrement C reg

4113 JNZ LOOP2 If C is not zero go to loop2

4114

4115

4116 DCR B Decrement B reg

4117 JNZ LOOP3 If B is not Zero go to loop3

4118

4119

411A HLT Stop the program

OBSERVATION:

INPUT OUTPUT

MEMORY

LOCATION

DATA MEMORY

LOCATION

DATA

4200 4200

4201 4201

4202 4202

4203 4203

4204 4204

 27

RESULT:

 Thus the ascending order program is executed and thus the

numbers are arranged in ascending order.

 28

(D). DESCENDING ORDER

AIM:

 To sort the given number in the descending order using 8085

microprocessor.

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.

 2. Compare the first two numbers and if the first number is smaller

than second then interchange the number.

3. If the first number is larger, go to step 4

 4. Repeat steps 2 and 3 until the numbers are in required order

 29

FLOWCHART:

 NO

 YES

[B]  04H

[HL]  [8100H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[D] [HL]

[HL]  [A]

[HL]  [HL] - 1

[HL]  [D]

[HL]  [HL] + 1

[C]  [C] – 01 H

A

[C]  04H

 START

 30

 NO

 YES

 NO

 YES

IS

[C] = 0?

A

[B]  [B]-1

IS

[B] = 0?

 STOP

 31

PROGRAM:

ADDRE

SS

OPCO

DE

LABEL MNEM

ONICS

OPER

AND

COMMENTS

4100 MVI B,04 Initialize B reg with number

of comparisons (n-1) 4101

4102 LOOP 3 LXI H,4200 Initialize HL reg. to

8100H 4103

4104

4105 MVI C,04 Initialize C reg with no. of

comparisons(n-1) 4106

4107 LOOP2 MOV A,M Transfer first data to acc.

4108 INX H Increment HL reg. to point

next memory location

4109 CMP M Compare M & A

410A JNC LOOP1 If A is greater than M then go

to loop1 410B

410C

410D MOV D,M Transfer data from M to D reg

410E MOV M,A Transfer data from acc to M

410F DCX H Decrement HL pair

4110 MOV M,D Transfer data from D to M

4111 INX H Increment HL pair

4112 LOOP1 DCR C Decrement C reg

4113 JNZ LOOP2 If C is not zero go to loop2

4114

4115

4116 DCR B Decrement B reg

4117 JNZ LOOP3 If B is not Zero go to loop3

4118

4119

411A HLT Stop the program

OBSERVATION:

INPUT OUTPUT

MEMORY

LOCATION

DATA MEMORY

LOCATION

DATA

4200 4200

4201 4201

4202 4202

4203 4203

4204 4204

 32

RESULT:

 Thus the descending order program is executed and thus the

numbers are arranged in descending order.

 33

II. Programs using Rotate instructions

AIM:

To write an assembly language program for rotate instruction using

8085 Microprocessor kit.

APPARATUS REQUIRED:

S.No APPARATUS QUANTITY

1 8085 Microprocessor Kit 1

2 Power Supply -

3 Opcode Sheet 1

ALGORITHM FOR BCD TO BINARY CONVERSION:

1. Get the BCD data in A register and save in E register.

2. Mark the lower units of BCD data in A register.

3. Rotate the upper units to lower units’ position and save in B register.

4. Clear the accumulator.

5. Move 0AH to C register.

6. Decrement C register.

7. If zf=0, go to the previous step.

8. Add B register to A register.

9. Save the product in B register.

10. Get the BCD data in A register from E register and mark the upper

nibble.

11. Add the units in A register with the product in B register.

12. Store the binary value in A register.

13. Stop the program.

 34

 35

PROGRAM:
MEMORY

LABEL MNEMONICS OPCODE COMMENTS

ADDRESS

4100 START MVI A,94H

4102 RLC

4103 STA 5000

4106 RRC

4107 STA 5001

410A RAR

410B STA 5002

410E RAL

410F STA 5003

4112 HLT

OUTPUT:

INPUT OUTPUT

MEMORY

LOCATION

DATA MEMORY

LOCATION

DATA

4100 5000

5001

5002

5003

 36

RESULT:

Thus the conversions from BCD to Binary were obtained.

 37

III. Hex / ASCII / BCD code conversions

(A). CODE CONVERSION – BCD TO HEX

AIM:

 To convert a given BCD number to hexadecimal.

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Get the BCD number from memory and separate LSB and

MSB digits.

3. Multiply MSB No. of BCD to 0AH times and add the LSB

to the resultant.

4. Store the resultant in memory location.

 38

FLOWCHART:

 NO

 YES

 START

B 0AH

HL 4500H

A [[HL]]

A A . 0FH

C A

A A . F0H

Rotate the Acc. four

Times.

A [[HL]]

D A

Clear Acc.

A A+B

Decrement D reg.

 Is

D=00H?

A A+C

A 4501H

Stop

 39

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4300 START LXI H,5000 Initialize HL reg to

5000 4301

4302 Move M to Acc

Add to Acc

Move Acc to b
4303 MOV A,M

4304 ADD A

4305 MOV B,A

4306 ADD A Add a,b

4307 ADD A

4308 ADD B

4309 INX H Increment H

430A ADD M

430B INX H

430C MOV M,A Stop progrm

430D HLT

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

5000 5002

5001

RESULT:

Thus an ALP program for conversion of BCD to HEX was

written and executed.

 40

(B). CODE CONVERSION –HEX TO BCD

AIM:

 To convert a given number hexadecimal to BCD

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Get the HEX number from memory.

3. Initialize the memory to store the output.

4. Subtract the given HEX No. by 64H(100BCD) .Repeat the

subtraction with the resultant & 64H and keep count until

there is a carry.

5. Store the count, which is MSB of BCD in a memory location.

6. Subtract the 0AH (10BCD) from the result of the previous

step. Repeat the subtraction with the resultant & 0AH and

keep count until there is a carry.

7. Store the count, which is next significant bit of BCD in next

memory location.

8. Store the result of step 6, which is LSB of BCD in next

memory location.

 41

FLOW CHART:

 NO

 YES

START

HL 4500H

A M

HL 4600H

B 64H

Call subroutine

HEXBCD

B 0AH

M A

Call subroutine

HEXBCD

Stop

HEXBCD

M FFH

M M+1

A A- B

Is

A=00H?

A A+B

Increment HL

reg. pair

Return to main

program

 42

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4300 START LXI H,5000

4301

4302

4303 MVI D,00

4304

4305 XRA A

4306 MOV C,M

4307 LOOP2 ADI 01

4308

4309 DAA

430A JNC LOOP1

430B

430C

430D INR D

430E DCR C

430F JNZ LOOP2

4310

4311

4312 STA 5001

4313

4314

4315 MOV A,D

4316 STA 5002

4317

4318

4319 HLT

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

5000

5001

5002

 43

RESULT:

Thus an ALP program for conversion of HEX to BCD was

written and executed.

 44

C. ASCII TO HEXADECIMAL AND HEXADECIMAL TO ASCII

AIM:

To Write an Assembly Language Program to Perform the Conversions

of ASCII to Hexadecimal Number, Hexadecimal to ASCII,

A.ASCII TO HEXADECIMAL

ALGORITHM:

1. Start the program

2. Load the data from address 4200 to A

3. Move data from accumulator to C

4. Move data from M to HL pair to accumulator

5. Subtract the data 30 from A

6. Decrement content of register

7. Stop the program if C is zero

8. Jump to Step 5

9. End the program

 45

FLOWCHART:

 46

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4300 START LDA 5000

4301

4302

4303 SUI 30

4304

4305 CPI 0A

4306

4307 JC SKIP

4308

4309

430A SUI 07

430B

430C SKIP STA 5001

430D

430E

430F HLT

 47

B. HEXADECIMAL TO ASCII

ALGORITHM:

1. Start the program

2. Load the data from address 4200 to A

3. Move data from accumulator to C

4. Move data from M to HL pair to accumulator

5. Add the data 30 to A

6. Decrement content of register

7. Stop the program if C is zero

8. Jump to Step 5

9. End the program

 48

 49

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4300 START LDA 4400

4301

4302

4303 CPI 0A

4304

4305 JC AHEAD

4306

4307

4308 ADI 07

4309

430A AHEAD ADI 30

430B

430C STA 4401

430D

430E

430F HLT

 50

OBSERVATION:

ASCII TO HEXADECIMAL:

HEXADECIMAL TO ASCII:

RESULT:

Thus the assembly language programs for various code conversions

are executed using 8085 microprocessor.

INPUT

OUTPUT

MEMORY

LOCATION

DATA

MEMORY

LOCATION

DATA

4000

 4001

INPUT

OUTPUT

MEMORY

LOCATION

DATA

MEMORY

LOCATION

DATA

4400

 4401

 51

3. Interface Experiments: with 8085

(i) .DAC INTERFACING

AIM:

To write an assembly language program to convert a digital signal

into an analog signal using DAC interfacing.

APPARATUS REQUIRED:

8085Trainer Kit

DAC Interface Board

Power supply

THEORY:

DAC 0800 is an 8–bit DAC and the output voltage variation is between –5V and

5V.The output voltage varies in steps of 10/256=0.04(appx.).The digital data input and

The corresponding output voltages are presented in the Table below.

 Input Data in HEX Output Voltage

00 5.00

01 4.96

02 ..

…

7F

…

 FD

 FE 4.96

 FF 5.00

Referring toTable1, with 00 H as input to DAC, the analog output is –5 V.Similarly, With

FF H input, the output is +5V.Outputting digital data 00 and FF at regular intervals, to DAC,

results in different waveforms namely square, triangular, etc, the port address of DAC is 08H.

 52

ALGORITHM:

(a) Square Wave Generation

1. Load the initial value (00) to Accumulator and move it to DAC

2. Call the delay program

3. Load the final value (FF)to accumulator and move it to DAC

4. Call the delay program.

5. Repeat Steps 2 to 5

(b) Saw tooth Wave Generation

1. Load the initial value(00) to Accumulator

2. Move the accumulator content to DAC

3. Increment the accumulator content by 1.

 4. Repeat Steps 3 and 4.

(c) Triangular Wave Generation

1. Load the initial value (00) to Accumulator

2. Move the accumulator content to DAC

3. Increment the accumulator content by1.

4. If accumulator content is zero proceed to next step. Else go to step3.

5. Load value (FF) to Accumulator

6. Move the accumulator content to DAC

7. Decrement the accumulator content by1.

8. If accumulator content is zero go to step2. Else go to step7.

 53

PROGRAM:

(a) Square Wave Generation

ADDRESS LABEL MNEMONICS OPCODE COMMENTS

4100 START MVI A, 00 Load the initial value (00) to

Accumulator and move it to DAC

4102 OUT C8

4104 CALL DELAY
Call the delay program

4107 MVI A, FF Load the final value (FF)to

4109 OUT C8 accumulator and move it to DAC

410B

CALL DELAY

410E
 JMP START Call the delay program

4111
DELAY MVI B, 05

4113 L1
MVI C, FF

4115 L2
DCR C

4116
JNZ L2

4119

 DCR B

411A

 JNZ L1

411D

 RET

 54

(B) Saw tooth Wave Generation

ADDR

ESS

LABEL MNEMONICS OPCODE OPERAND COMMENT

4100

START MVI A,00

4102

L1 OUT C0

4104

 INR A

4105

 JNZ L1

4108

 JMP START

c) Triangular Wave Generation

ADDRESS LABEL MNEMONICS OPCODE OPERAND COMMENT

4100

START MVI L 00 Move 00 to L register

4101

 MOV A,L Load L to a register

4102

L1 OUT C8 Load c8 to output port

4105

 INR L Increment L register

4106

 JNZ L1 Jump to L1 if no zero

4109

 MVI L FF Load FF to L register

410B

L2 MOV A,L Move L to a register

410C

 OUT C8 Load C8 to output port

410E

 DCR L Decrement L register

410F

 JNZ L2 Jump to L2 if no zero

4102

 JMP START Go to START

unconditionally

 55

FLOWCHART:

SQUARE:

 56

DAC-CIRCUIT:

WAVEFORMS:

 57

OBSERVATION:

WAVEFORMS AMPLITUDE TIME PERIOD

SQUARE

SAWTOOTH

TRIANGULAR

RESULT:

Thus the square, triangular and saw tooth waveform were generated

 58

by interfacing DAC with 8085 trainer kit.

B. ADC INTERFACING

AIM:

To write an assembly language program to convert an analog signal

into digital signal using ADC interfacing.

THEORY:

An ADC usually has two additional control lines: the SOC input to

tell the ADC when to start the conversion and the EOC output to announce

when the conversion is complete. The following program initiates the

conversion process, checks the EOC pin of ADC 0419 as to whether the

conversion is over and then inputs the data to the processor. It also instructs

the processor to store the converted digital data at RAM 4200H.

ALGORITHM:

1. Select the channel and latch the address.

2. Send the start conversion pulse.

3. Read EOC signal.

4. If EOC =1 continue else go to step (3)

5. Read the digital output.

6. Store it in a memory location.

 59

 60

CIRCUIT DIAGRAM:

ANALOG VOLTAGE DIGITAL DATA ON

LED DISPLAY

HEX CODE IN

LOCATION 4150

0.5 V

1.0 V

1.5V

2.0V

2.5V

3.0V

RESULT:

Thus the analog to digital conversion is obtained using 8085 microprocessor.

 61

4. TRAFFIC LIGHT CONTROLLER

AIM:

 Write an ALP to control the traffic light signal using the microprocessor 8085.

THEORY:

A simple contraption of a traffic control system is shown in the figure

where the signaling lights are simulated by the blinking or ON – OFF

control of LED’s. The signaling lights for the pedestrian crossing are

simulated by the ON – OFF control of dual colour LED’s. A model of a four

road – four lane junction, the board has green, yellow and red LED’s which

are the green, orange and red signals of an actual systems. 12 LEDs are used

on the board. In addition 8 dual colour LEDs are used which can be made to

change either to red or to green.

The control of the LEDs is as follows:

The board communicates with the microprocessor trainer by means of

a 26 core cable which is connected to the output pins of any parallel port of

trainer. The outputs (i.e. port) are the inputs to buffers 7406 whose outputs

drive the LEDs. The buffered output applied to the cathode of the LEDs

decides whether it is ON or OFF.

ALGORITHM:

1. Initialize 8255, port A and port B in output mode

2. Send data on PA to glow R1 and R2.

3. Send data on PB to glow G3 and G4.

4. Load multiplier count (40) for delay.

5. Call delay subroutine.

6. Send data on PA to glow Y1 and Y2.

7. Send data on PB to glow Y3 and Y4.

8. Load multiplier count (10) for delay.

9. Call delay subroutine.

 62

10. Send data on PA to glow G1 and G2.

11. Send data on PB to glow R3 and R4.

12. Load multiplier count (40) for delay.

13. Call delay subroutine.

14. Send data on PA to glow Y1 and Y2.

15. Send data on PA to glow Y3 and Y4.

16. Load multiplier count (10) for delay.

17. Call delay subroutine

 63

FLOWCHART:

START

Initialize 8255, port A and port B

Send data on PA to glow R1 and R2.

Send data on PB to glow G3 and G4.

Call delay subroutine

Send data on PA to glow Y1 and Y2.

Call delay subroutine

Send data on PA to glow G1 and G2.

Call delay subroutine

Send data on PA to glow Y1 and Y2.

Send data on PA to glow Y3 and Y4.

Call delay subroutine

STOP

 64

Source program:

 ADDRESS LABEL MNEMONICS OPCODE COMMENTS

 8000 MVI A, 80 H 3E,80 Initialize 8255, port A and port B
 in output mode
 8002 OUT 83H(CR) D3,83

 8004 START MVI A,09H 3E,09 Send data on PA to glow R1 and

 R2
 8006 OUT 80H(PA) D3,80

 8008 MVI A,24H 3E,24

 800A OUT 81H(PB) D3,81 Send data on PB to glow G3 and
 G4

 800C MVI C,28H 0E,28 Load multiplier count (40) for

 Delay
 800E CALL DELAY CD,40,80 Call delay subroutine

 8011 MVI A, 12H 3E,12

 8013 OUT (81H) PA D3,81 Send data on PA to glow Y1 and
 Y2

 8015 OUT (81H) PB D3,81 Send data on PB to glow Y3 and
 Y4

 8017 MVI C,OAH 0E,0A Load multiplier count (10) for

 Delay
 8019 CALL DELAY CD,40,80 Call delay subroutine

 801C MVI A,24H 3E,24

 801E OUT (80H) PA D3,80 Send data on PA to glow G1 and
 G2

 8020 MVI A, 09H 3E,09
 Send data on PB to glow R3 and
 8022 OUT (81H) PB D3,81 R4

 8024 MVI C,28H 0E,28 Load multiplier count (40) for

 65

 delay

8026 CALL DELAY CD,40,80 Call delay subroutine

8029 MVI A, 12H 3E,12

802B OUT PA D3,80 Send data on PA to glow Y1 and

 Y2
802D OUT PB D3,81 Send data on PA to glow Y3 and

 Y4
802F MVI C,OAH 0E,0A Load multiplier count (10) for

 delay
803B CALL DELAY CD,40,80 Call delay subroutine

803F JMP START C3,04,80

Delay subroutine:

ADDRESS LABEL MNEMONICS OPCODE COMMENTS
8040 DELAY LXI D,COUNT 11,XXXX Load the count to give 0.5 sec

 delay
8043 BACK DCX D 1B Decrement counter

8044 MOV A,D 7A

8045 ORA E B3 Check whether count is 0

8046 JNZ BACK C2,43,80 If not zero, repeat

8049 DCR C 0D Check if multiplier zero,
 otherwise repeat
804A JNZ DELAY C2,40,80

804D RET C9 Return to main program

 66

Traffic light controller:

RESULT:

Thus traffic light control is obtained using 8085 microprocessor

 67

5. I/O PORT / SERIAL COMMUNICATION

(A) INTERFACING I/O (8255) WITH 8085

AIM:

 To interface programmable peripheral interface 8255 with 8085 and

study its characteristics in mode0, mode1 and BSR mode.

APPARATUS REQUIRED:

 8085 p kit, 8255Interface board, DC regulated power supply, VXT

parallel bus

 I/O MODES:

 Control Word:

 68

MODE 0 – SIMPLE I/O MODE:

 This mode provides simple I/O operations for each of the three

ports and is suitable for synchronous data transfer. In this mode all the ports

can be configured either as input or output port.

 Let us initialize port A as input port and port B as output port

PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 START: MVI A, 90 Initialize port A

as Input and Port

B as output.
4101

4102 OUT C6 Send Mode

Control word 4103

4104 IN C0 Read from Port A

4105

4106 OUT C2 Display the data

in port B 4107

4108 STA 4200 Store the data

read from Port A

in 4200
4109

410A

410B HLT Stop the

program.

MODE1 STROBED I/O MODE:

 In this mode, port A and port B are used as data ports and port C is

used as control signals for strobed I/O data transfer.

 Let us initialize port A as input port in mode1

MAIN PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 START: MVI A, B4 Initialize port A

as Input port in

mode 1.
4101

4102 OUT C6 Send Mode

Control word 4103

4104 MVI A,09 Set the PC4 bit

for INTE A

4105

4106 OUT C6 Display the data

in port B

 69

4107

 EI

4108 MVI A,08 Enable RST5.5

4109

410A SIM

 EI

410B HLT Stop the

program.

ISR (Interrupt Service Routine)

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4200 START: IN C0 Read from port A

4201

4202 STA 4500 Store in 4500.

4203

4204

4205 HLT Stop the

program.

BSR MODE(Bit set reset mode)

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 START MVI A,01 Go to 4200

4102 OUT C6

4104 MVI A,07

4106 OUT C6

4108 HLT

 70

BSR MODE (Bit Set Reset mode)

 Any lines of port c can be set or reset individually without affecting

other lines using this mode. Let us set PC0 and PC3 bits using this mode.

PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 START: MVI A, 01 Set PC0

4101

4102 OUT C6 Send Mode

Control word 4103

4104 MVI A,07 Set PC3

4105

4106 OUT C6 Send Mode

Control word 4107

4109 HLT Stop the

program.

 71

RESULT:

 Thus 8255 is interfaced and its characteristics in mode0, mode1 and

BSR mode is studied.

 72

(B) INTERFACING SERIAL COMMUNICATION (8251) WITH 8085

 Communication between two 8085 Microprocessors

Aim:

 To transmit and receive a Character between two 8085 ps

using 8251A

Apparatus Required:

 8085 p Kit – 2 No.s , RS 232C cable , Power supply – 2

No.s

Theory:

 The program first initializes the 8253 to give an output clock

frequency of 150KHz at channel 0 which will give a 9600 baud

rate of 8251A. Then the 8251A is initialized to a dummy mode

command. The internal reset to 8251A is then provided, since the

8251A is in the command mode now. Then 8251A is initialized as

follows.

 Initializing 8251A using the Mode instruction to the

following.

 8 bit data

 No parity

 16x Baud rate factor

 1 stop bit

 B2 , B1 = 1 , 0

 L2 , L1 = 1 ,1

 PEN = 0

 EP = 0

 S2 , S1 = 0 , 1

 gives a Mode command word of 4E.

 73

 When 8251A is initialized as follows using the command

instruction,

 Reset Error flags,

 Enable transmission and reception,

 Make RTS and DTR active low.

 EH = 0 SBRK = 0

 IR = 0 RxE = 1

 RTS = 1 DTR = 1

 ER = 1 TxEN = 1

 We get a command word of 37

The program after initializing , will read the status register and

check for TxEMPTY. If the transmitter buffer is empty then it will

send 41 to the serial port and then check for a character in the

receive buffer. If some character is present then, it is received and

stored at location 4200H.

Program:

ADDRESS LABEL MNEMONICS OPCODE OPERAND COMMENT

4100 MVI A,36

4102 OUT

TMRCNT

4104 MVI A,0A

4106 OUT MRCHO

4108 XRA A

4109 OUT

TMRCHO

410B XRA A

410C OU UATCNT

410E MVI A,40

4110 OUT

UATCNT

4112 MVI A,4E

4114 OUT

UATCNT

4116 MVI A,37

 74

4118 OUT

UATCNT

Program for Receiver:

ADDRESS LABEL MNEMONICS OPCODE OPERAND COMMENT

411A LOOP IN UATCNT

411C ANI 02

411E JZ LOOP1

4121 IN UATDAT

4123 STA 4200

4126 HLT

Procedure:

 Feed the above program in two 8085 ps (One acts as

Transmitter and the other acts as Receiver). Execute the two

programs simultaneously. Check the Receiver at location 4200H.

It‘s content will be 41.

Exercise: Write a program to transmit a block of data from

transmitter and receive them at the receiver.

INPUT OUPUT

Address Data Address Data

A reg 4200

Result:

Thus the communication between two microprocessors has been

established.

ADDRESS LABEL MNEMONICS OPCODE OPERAND COMMENT

411A LOOP IN UATCNT

411C ANI 04

411E JNZ LOOP

4121 MVI A,41

4123 OUT

UATDAT

 75

7. READ A KEY ,INTERFACE DISPLAY

INTERFACING 8279 WITH 8085

AIM:

To write the program to show the LED segment in 8279 by interfacing 8085 with 8279.

APPARATUS REQUIRED:

(i) 8085 microprocessor

(ii) Power supply

(iii) Keyboard

(iv) 8279 interfacing card.

ALGORITHM:

1. Start the program.

2. Get the Hex code at the memory location 809, 800B,8011,8015

3. State results interfacing card 0123.

4. Stop the execution

 76

PROGRAM:

ADDRESS LABEL MNEMONICS OPCODE OPERAND COMMENT

4100 START LXI H 412C

4103 MVI D 0F

4105 MVI A 10

4107 OUT C2

4109 MVI A CC

410B OUT C2

410D MVI A 90

410F OUT C2

4111 MOV A,M

4112 OUT C0

4114 CALL

DELAY

 DELAY

4117 INX H

4118 DCR D

4119 JNZ LOOP LOOP

411C JMP START START

411F DELAY MVI B A0

4121 LOOP1 MVI C FF

4123 LOOP2 DCR C

4124 JNZ LOOP1 LOOP1

4127 DCR B

4128 JNZ LOOP2 LOOP2

412B RET

OBSERVATION:

LETTER SEGMENT DATA BUS HEXADECIMAL

D7 D6 D5 D4 D3 D2 D1 D0

 77

FLOW CHART:

RESULT:

Thus 8279 Controller was interfaced with 8085 and Program for Read Key and Rolling Display

was Executed Successfully.

8051 MICROCONTROLLER PROGRAMS

8. DEMONSTRATION OF BASIC INSTRUCTIONS WITH 8051 MICRO CONTROLLER EXECUTION,

INCLUDING:

(i) Conditional Jumps, Looping

&

9. PROGRAMMING I/O PORT 8051

(i). Interfacing DAC With 8051

 AIM:
To interface DAC with 8051 parallel port to demonstrate the generation of square,

Saw tooth and triangular wave.

APPARATUS REQUIRED:

 8051Trainer Kit

 DAC Interface Board

THEORY:
DAC 0800 is an 8–bit DAC and the output voltage variation is between –5V and 5V.The output voltage

varies in steps of 10/256=0.04(appx.).The digital data input and The corresponding output voltages are presented in

the Table below.

Input Data in HEX Output Voltage

00 5.00

01 4.96

02

… …..

7F …

FD ….

 FE 4.96

FF 5.00
Referring to Table1,with 00 H as input to DAC, the analog output is –5 V. Similarly, With FF H as input, the

output is +5V. Outputting digital data 00 and FF at regular intervals, to DAC , results in different waveforms

namely square, triangular ,etc,.

ALGORITHM:

(a) Square Wave Generation

1. Move the port address of DAC to DPTR

2. Load the initial value(00) to Accumulator and move it to DAC

3. Call the delay program

4. Load the final value(FF) to accumulator and move it to DAC

5. Call the delay program.

6. Repeat Steps 2 to 5

(b) Saw tooth Wave Generation

1. Move the port address of DAC to DPTR

2. Load the initial value (00) to Accumulator

3. Move the accumulator content to DAC

4. Increment the accumulator content by 1.

5. Repeat Steps 3 and 4.

(c) Triangular Wave Generation

1. Move the port address of DAC to DPTR

2. Load the initial value (00) to Accumulator

3 Move the accumulator content to DAC

4. Increment the accumulator content by 1.
5. If accumulator content is zero proceed to next step. Else go to

step3.

6. Load value (FF) to Accumulator

7. Move the accumulator content to DAC

8. Decrement the accumulator content by 1.

9. If accumulator content is zero go to step 2. Else go to step 7.

PROGRAM:

a) Square Wave Generation

ADDRESS LABEL MNEMONICS OPCODE COMMENTS

 ORG 4100

4100 MOV

 DPTR,#FF,C8

 MOV A,#00

 START MOVX @DPTR,A

 LCALL DELAY

 MOV A,#FF

 MOVX @DPTR,A

 LCALL DELAY

 LJUMP START

 DELAY MOV R1,#05

LOOP:

MOV R2,#FF

HERE

DJNZ R2,HERE

 DJNZ R1,LOOP

 RET

 SJMP START

(b) Saw tooth Wave Generation

 ADDRESS LABEL MNEMONICS OPCODE COMMENTS

 ORG 4100

 MOV DPTR, #FF, C0

 MOV A,#00

 LOOP MOVX @DPTR ,A

 INC A

 SJMP LOOP

 (c) Triangular Wave Generation

ADDRESS LABEL MNEMONICS OPCODE COMMENTS

 ORG 4100

 MOV DPTR, #FF,C8

START

 MOV A,#00

LOOP1

 MOVX @DPTR ,A

 INC A

 JNZ LOOP1

 MOV A,#FF

LOOP2:

 MOVX @DPTR,A

 DEC A

 JNZ LOOP2

 LJMP START

FLOWCHART:

DAC INTERFACING

OBSERVATION:

WAVE FORMS AMPLITUDE TIME PERIOD

SQUARE WAVEFORM

SAW TOOTH WAVEFORM

TRIANGULAR WAVEFORM

RESULT:

Thus the square, triangular and saw tooth waveform were generated by interfacing

DAC with 8051 trainer kit.

(i). Interfacing ADC With 8051

AIM:
To Write an Assembly Language Program to Convert an analog signal into digital using ADC interfacing

in 8051 microcontroller kit.

APPARATUS REQUIRED:

 8051Trainer Kit

 ADC Interface Board

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS COMMENT

4100 MOV DPTR,#FF C8 CHANNEL 0

SELECTION

4103 MOV A,#10 AND ALE LOW

4105 MOVX @DPTR,A

4106 MOV A,#18 ALE HIGH

4108 MOVX @DPTR,A

4109 MOV A,#10

410B MOV@DPTR,A

410C HERE SJMP HERE

PROCEDURE

1. Place jumper j2 in B position

2. Place jumper j5 in A position

3. Enter and execute the program

4. Vary the analog input and give the SOC by pressing the SOC switch.

5. See the corresponding digital value in the led display.

OBSERVATION:

ANALOG VOLTAGE DIGITAL DATA ON LED

DISPLAY

HEX CODE

RESULT:

Thus the conversion of analog signal into a digital value was done by using ADC interfacing with 8051

trainer kit.

(ii) STUDY ON INTERFACE WITH DC MOTOR

AIM:

 To study and interface with DC Motor in 8051 microcontroller kit.

APPARATUS REQUIRED:

1. DC Motor

2. 8051 microcontroller kit

Program:

 To control speed of the motor.

ADDRESS OPCODE LABEL MNEMONICS COMMENT

 PORT EQU 0C0H

4100 START MVI A,0FFH Max. data to DAC

4102 OUT 0C0H DAC port

4104

4106 HLT

PROCEDURE:

1. Run the DC motor at full speed by latching ‘FF’ to the DAC.

2. Make the Gate of Channel 0 To ‘0’ Logic.

3. Initialize The Counter Value. Calculate The Difference In Count.

4. Make the gate logic1 for 1 second.

5. Read the counter value. Calculate the difference in count.

6. Display RPM

RESULT:

 Thus the study and interface of the DC motor with 8051 microcontroller kit were studied and verified.

	1(B). 8 BIT DATA SUBTRACTION
	1(C). 8 BIT DATA MULTIPLICATION
	1(D). 8 BIT DIVISION
	2. PROGRAMMING WITH CONTROL INSTRUCTIONS:
	I. (A). LARGEST ELEMENT IN AN ARRAY
	(B). SMALLEST ELEMENT IN AN ARRAY

	(C).ASCENDING ORDER
	(D). DESCENDING ORDER
	PROGRAM:
	III. Hex / ASCII / BCD code conversions
	(A). CODE CONVERSION – BCD TO HEX

	C. ASCII TO HEXADECIMAL AND HEXADECIMAL TO ASCII
	AIM:
	To Write an Assembly Language Program to Perform the Conversions of ASCII to Hexadecimal Number, Hexadecimal to ASCII,
	A.ASCII TO HEXADECIMAL
	ALGORITHM:
	1. Start the program
	2. Load the data from address 4200 to A
	3. Move data from accumulator to C
	4. Move data from M to HL pair to accumulator
	5. Subtract the data 30 from A
	6. Decrement content of register
	7. Stop the program if C is zero
	8. Jump to Step 5
	9. End the program
	FLOWCHART:
	B. HEXADECIMAL TO ASCII
	ALGORITHM: (1)
	1. Start the program (1)
	2. Load the data from address 4200 to A (1)
	3. Move data from accumulator to C (1)
	4. Move data from M to HL pair to accumulator (1)
	5. Add the data 30 to A
	6. Decrement content of register (1)
	7. Stop the program if C is zero (1)
	8. Jump to Step 5 (1)
	9. End the program (1)
	3. Interface Experiments: with 8085
	4. TRAFFIC LIGHT CONTROLLER
	Communication between two 8085 Microprocessors

